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Abstract

It is shown that a compact spacelike hypersurface contained in the chronological future (or past)
of an equator of de Sitter space is a totally umbilical round sphere if there exist nonnegative constants
C1, C2, . . . , Cl−1, at least oneCi is positive, such that

Hl =
l−1∑
i=1

CiHi.

This extends the previous result in [J. Geom. Phys. 39 (2001), Theorem 2].
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1. Introduction

Let L
n+2 be the(n+ 2)-dimensional Lorentz–Minkowski space, that is, the real vector

spaceRn+2 endowed with the Lorentzian inner product〈·, ·〉 given by

〈v,w〉 =
n+1∑
i=1

viwi − vn+2wn+2,
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and letSn+1
1 ⊂ L

n+2 be the(n+ 1)-dimensional unitary de Sitter space

S
n+1
1 = {x ∈ L

n+2 : 〈x, x〉 = 1}.
It is well known that, forn ≥ 2, the de Sitter spaceSn+1

1 is the standard simply connected
Lorentzian space form of positive constant sectional curvature. A smooth immersionψ :
Mn → S

n+1
1 ⊂ L

n+2 of a connectedn-dimensional manifoldMn is said to be aspacelike hy-
persurfaceif the induced metric viaψ is a Riemannian metric onMn, which will also be de-
noted by〈·, ·〉. WhenMn is compact without boundary, the following characterization of the
totally umbilical round hypersurface is recently known (for Riemannian case, see[5,8,11]).

Theorem 1 ([4, Theorem 2]). Letψ : Mn → S
n+1
1 ⊂ L

n+2 be a compact spacelike hy-
persurface in de Sitter space, which is contained in the chronological future(or past) of an
equator ofSn+1

1 . If Hl does not vanish onMn and the ratioHk/Hl is constant for somek, l,
1 ≤ l < k ≤ n, thenMn is a totally umbilical round sphere.

In this note, we generalizeTheorem 1in the following way.

Theorem 2. Let ψ : Mn → S
n+1
1 ⊂ L

n+2 be a compact spacelike hypersurface in de

Sitter space, which is contained in the chronological future(or past) of an equator ofSn+1
1 .

If there are nonnegative constantsC1, C2, . . . , Cl−1, at least oneCi is positive, such that

Hl =
l−1∑
i=1

CiHi,

thenMn is a totally umbilical round sphere.

The Riemannian version ofTheorem 2under the convexity assumption is proven in
[10]. After the submission of this paper, we were informed that similar result was given in
Theorem 6.1 of[3]. It should be remarked that, while our proof is simpler, Theorem 6.1 in
[3] works for a very wide class of ambient spacetimes, not only for de Sitter space.

2. Preliminaries

LetMn be a compact spacelike hypersurface in de Sitter space, thenMn is diffeomorphic
to ann-sphere[2], hence is orientable. Then there exists a timelike unit normal fieldη

globally defined onMn. Now, letA be the shape operator ofMn in S
n+1
1 with respect toη,

which is given by

A(X) = −dη(X).

Letκ1, κ2, . . . , κn be principal curvatures ofMn and letσk be thekth elementary symmetric
polynomial of the principal curvatures:

σk(κ1, κ2, . . . , κn) =
∑

i1<i2<···<ik
κi1 · · · κik , 1 ≤ k ≤ n,
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thenkth mean curvature functionHk of the spacelike hypersurface is defined by(
n

k

)
Hk = (−1)kσk(κ1, . . . , κn) = σk(−κ1, . . . ,−κn).

ThenH1 = −(1/n)trace(A) is the usual mean curvature function,H2 is the scalar curvature
ofMn up to a constant,Hn = (−1)n det(A) is the Gauss–Kronecker curvature function and
H0 is defined to beH0 ≡ 1.

The following Minkowski formula will be essential to our proof ofTheorem 2.

Lemma 1 ([2, Theorem 2]). Let ψ : Mn → S
n+1
1 ⊂ L

n+2 be a compact spacelike
hypersurface immersed into de Sitter space and leta ∈ L

n+1 be an arbitrary fixed vector.
For eachr = 0,1, . . . , n− 1, the following identities hold:∫

M

(−Hr〈a,ψ〉 +Hr+1〈a, η〉)dM = 0.

The following facts will also be used.

Lemma 2. Letψ : Mn → S
n+1
1 ⊂ L

n+2 be the same as inLemma 1. Suppose thatHl > 0
for somel = 2,3, . . . , n and that there exists a pointp0 ∈ M where all the principal
curvaturesκ1(p0), . . . , κn(p0) are negative.

(1) For i ≤ l,Hi > 0. Furthermore, it holds that

Hi

Hl
≥ Hi−1

Hl−1
,

and the equality holds if and only if all the principal curvatures are the same.
(2) If there are nonnegative constantsC1, C2, . . . , Cl−1 such thatHl = ∑l−1

i=1CiHi, then

it holds thatHl−1 ≥ ∑l−1
i=1CiHi−1, and if, furthermore, the equality holds, then all the

principal curvatures are the same.

Proof.

(1) For the first inequality, see[9, Lemma 1]. For the second inequality, see, for example,
[6].

(2) Dividing the first identity byHl, we have from (1) that

1 =
l−1∑
i=1

Ci
Hi

Hl
≥

l−1∑
i=1

Ci
Hi−1

Hl−1

or

Hl−1 −
l−1∑
i=1

CiHi−1 ≥ 0.
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If the identity holds, it implies

Hi

Hl
= Hi−1

Hl−1
,

which implies that all the principal curvatures are the same by (1). �

3. Proof

Let us assume, for instance, that the hypersurfaceψ : Mn → S
n+1
1 ∈ L

n+2 is contained
in the future of the equator determined by a unit timelike vectora ∈ L

n+2 (the case of the
past is similar). This means thatψ(Mn) ⊂ {x ∈ S

n+1
1 : 〈a, x〉 < 0}, that is

〈a,ψ〉 < 0,

onMn. We first show thatHl > 0 onMn. Let us orientMn by the globally defined timelike
unit normal fieldη so that

〈a, η〉 ≤ −1< 0.

SinceMn is compact, there exists a point, say,p0 at which the height function〈a,ψ〉 attains
its maximum. On the other hand, since〈a,ψ〉 < 0 onMn, we have

〈a,ψ(p0)〉 = max
p∈M

〈a,ψ(p)〉 < 0.

Furthermore, its Hessian atp0, ∇2〈a,ψ〉(p0) satisfies

∇2〈a,ψ〉(p0)(v,w) = −〈a,ψ(p0)〉〈v,w〉 − 〈a, η(p0)〉〈Ap0(v), w〉 ≤ 0

for all v,w ∈ Tp0M. Now, takev = w as a principal direction, then since

〈v, v〉 > 0, 〈a,ψ(p0)〉 < 0, 〈a, η(p0)〉 < 0,

we have

〈Ap0(v), v〉 ≤ −〈a,ψ(p0)〉
〈a, η(p0)〉 〈v, v〉 < 0,

that is

κi(p0) < 0, l = 1,2, . . . , n,

in particular

Hl(p0) > 0.

We now claim thatHl(p) > 0 for every pointp ∈ M. The following proof of this claim
is essentially the same as in[1], however, we include here for completeness. LetU be the
connected component of the set{p ∈ M : Hl(p) > 0} containingp0. It is clear thatU is a
nonempty open subset ofM. We will show that it is also closed. By Garding’s inequality
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[7] (taking into account the sign convention in the definition ofHl), we know that at each
pointp ∈ U

H
l/i
i (p) ≥ Hl(p) > 0

for every 1≤ i ≤ l − 1. We also know that there exists at least one positive constantCi,
sayCk > 0. Then, at each pointp ∈ U, we have

Hl(p) =
l−1∑
i=1

CiHi(p) ≥ CkHk(p).

On the other hand, we also have, at each pointp ∈ U

H
l/k

k (p) ≥ Hl(p) ≥ CkHk(p) > 0.

HenceH(l−k)/k
k (p) ≥ Ck > 0 onU, which gives

Hl(p) ≥ CkC
k/(l−k)
k = C

l/(l−k)
k > 0,

showing thatU = {p ∈ M : Hl(p) ≥ C
l/(l−k)
k > 0} is also closed. ThereforeM = U and

Hl > 0 on the wholeM, as we claimed. Now, we have, from the Minkowski formula∫
M

Hl−1〈a,ψ〉 dM =
∫
M

Hl〈a, η〉 dM.

On the other hand, we have from the assumption of the theorem and the Minkowski formula∫
M

Hl〈a, η〉 dM

= C1

∫
M

H1〈a, η〉 dM + C2

∫
M

H2〈a, η〉 dM + · · · + Cl−1

∫
M

Hl−1〈a, η〉 dM

= C1

∫
M

〈a,ψ〉 dM + C2

∫
M

H1〈a,ψ〉 dM + · · · + Cl−1

∫
M

Hl−2〈a,ψ〉 dM.

Then it follows that:

∫
M

(
Hl−1 −

l−1∑
i=1

CiHi−1

)
〈a,ψ〉 dM = 0.

Since both〈a,ψ〉 andHi−1 −∑l−1
i=1CiHi−1 do not change sign onMn, it then follows that

Hl−1 −
l−1∑
i=1

CiHi−1 ≡ 0

onMn. Then byLemma 2, every point should be an umbilical point, that is,Mn is a totally
umbilical round sphere.
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